Generalised animal and plant cell

MItochondria are also involved in a range of other processes:signalling, cellular differentiation, cell death, control of the cellcycle, and cell growth. They evolved as theresult of from ancient bacteria, which were engulfed by the ancestors ofeukaryote cells more than a billion years ago.

Make sure you can label diagrams of animal and plant cells, like these:

Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell. In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues or organs that are specialized for particular body functions. (Boundary: At this grade level, only a few major cell structures should be introduced.)


Plasmolysis in Elodea Plant Cells - Science NetLinks

. Systems of specialized cells within organisms help them perform the essential functions of life, which involve chemical reactions that take place between different types of molecules, such as water, proteins, carbohydrates, lipids, and nucleic acids. All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells.


A living organism may comprise a single cell e.g

. Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. (Boundary: Stress at this grade level is on understanding the macroscale systems and their function, not microscopic processes.)

Plant, Animal and Bacteria Cell Models - CELLS alive

. Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles that include being born (sprouting in plants), growing, developing into adults, reproducing, and eventually dying.

Unique Animal, Plant and Bacteria Characteristics

Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features (such as attractively colored flowers) for reproduction. Plant growth can continue throughout the plant’s life through production of plant matter in photosynthesis. Genetic factors as well as local conditions affect the size of the adult plant. The growth of an animal is controlled by genetic factors, food intake, and interactions with other organisms, and each species has a typical adult size range. (Boundary: Reproduction is not treated in any detail here; for more specifics about grade level, see .)

For life all cells have basic needs

of each chromosome pair) to both daughter cells. As successive subdivisions of an embryo’s cells occur, programmed genetic instructions and small differences in their immediate environments activate or inactivate different genes, which cause the cells to develop differently—a process called differentiation. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism. In sexual reproduction, a specialized type of cell division called meiosis occurs that results in the production of sex cells, such as gametes in animals (sperm and eggs), which contain only one member from each chromosome pair in the parent cell.

This BioCoach module is designed to help you review cell structure

. All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive, grow, and produce more plants.